
VMware Virtualization and Software Development 1

VMware Virtualization and Software Development

Mark Cloutier
Undergraduate Student, Applied Math and Computer Science

Keywords: Virtualization, VMware, Performance Testing

Abstract
Virtualization technology has recently matured to the point where it can be used dependably on
a daily basis by anyone. Computer virtualization is the idea of running virtual computer(s) inside
of a physical host computer. The basic idea behind the technology is not difficult to understand,
but understanding how the technology is implemented is more complicated. In this paper, the
basic ideas behind general virtualization are conveyed through VMware’s technology. VMware
is a company that is on the cutting edge of this technology and they offer many different
virtualization solutions for free and for purchase. Through benchmark testing, it can be shown
that current virtualization technology is on par with physical PC technology. This means that
the performance decline incurred by using a VM (virtual machine) is very minimal, and it is
getting smaller by the day.

Introduction
 Computer virtualization technology has now matured to the point where a virtual
personal computer (PC) can be just as effective as a real PC for many different reasons and
applications. This study of virtualization technology is mainly from the viewpoint of a software
developer. The main appeal of virtualization to a developer is the ability to test and develop
software on various operating systems (OS) while only using one host computer. This allows for
testing software on various platforms easily and transparently. Throughout this paper the
following will be presented: an overview of what virtualization is, the common terms associated
with virtualization, an overview of VMware applications and the technologies, the advantages to
the software developer, performance testing baselines, and the results of performance testing. For
the previously mentioned performance testing, the author will be applying his knowledge of the
programming language Java on the popular Linux distribution Ubuntu and on Windows XP
using both as virtual PCs and as standalone PCs.
 Although much of the content in this paper applies to all of the major virtualization
products such as Parallels and Microsoft Virtual PC, the author has chosen to focus on VMware,
because they control a sizeable part of the virtualization market. According to a study of the
market by InfoWorld in 2006, VMware is the clear market leader and will control over half of
the market for the near future (Marshall, Survey Suggests Server Virtualization Catching On,
2006). VMware is considered to be the grandfather of the current resurgence of virtualization
technologies since releasing the popular VMware Workstation in 1999 (VMware, About Us
Home, 2007). VMware is also on the cutting edge of VM (virtual machine) speed because they
have developed technology that executes code directly on the processor whenever possible and
can dynamically rewrite instructions when direct code execution is not possible (Mittell &
Hutchings, 2006). The final reason for choosing VMware is that they offer free virtualization
products which allows for easier testing of their products. The main product the author did his
testing on is called VMware server, which allows the creation and using of VMs. The software
can be downloaded free at http://www.vmware.com/download/server/. They also offer other free

http://www.vmware.com/download/server/

technologies such as VMware converter, which allows users to convert any physical PC into a
virtual PC, and VMware player, which is a lightweight application that allows users to boot
VMware
images created
in any other
VMware
application.

Figure 1. A physical PC (left) and a PC with two virtual PCs within a
physical PC (Image Credit: “Virtualization Overview”)

What is Virtualization?

The word virtualization generally means “an abstraction of resources” (Hammersley,
2007, p. 2). In the context of this paper, the word virtualization is used in the context of software
virtualization. Software virtualization “is a process in which the actual physical hardware of a
machine is decoupled, or abstracted … from the underlying operating system by means of
software” (Hammersley, 2007, p. 2). The decoupled machine still thinks it is running in a
physical environment, but there is actually software in between the decoupled virtual hardware
and the physical hardware. Depending on the amount of resources available on the physical PC,
there can be multiple virtual PCs within one physical PC. Figure 1 shows a normal physical PC
(left) and another PC with two virtual PCs within a physical PC.
 There are many advantages to integrating a virtual infrastructure within a physical
computer system over using a purely physical infrastructure. According to VMware Inc., in the
old system of using only a physical based system, there is “one physical operating system per
machine, the software and hardware tightly coupled, running multiple applications on the same
machine often creates conflict, resources are underutilized, and the infrastructure becomes
inflexible and costly” (VMware, Virtualization Overview, 2006). Conversely, according to
VMware Inc., the new virtualized infrastructure offers much more: “hardware-independence of
operating system and applications, VMs can be provisioned to any system, and a user can
manage OS and application as a single unit by encapsulating them into VMs” (VMware,
Virtualization Overview, 2006).

Terms and Definitions
 Here is a guide to common terms that will be used in this paper in regards to
virtualization.
Abstraction Layer: The process of separating hardware functionality from the underlying

hardware is called abstraction (Wolf & Halter, 2005, p. 2). The abstraction layer is
responsible for mapping the guest OS’s virtualized hardware to the host’s physical
hardware. This abstraction layer essentially turns the guest computer into a piece of
software that can be run on a host PC as a process (Wolf & Halter, 2005, p. 2).This

allows a guest OS to be moved from computer to computer without effecting the new
host PC or the moved guest OS.

C++: A general-purpose, high-level programming language with low-level facilities. Since the
1990s, C++ has been one of the most popular commercial programming languages. It was
developed in 1983 by Bjarne Stroustrup as an enhancement to the C programming
language (AT&T, 2008). In the future the author plans on performance testing C++ in a
virtual setting, along with the Java testing the author recently completed.

Guest: This refers to the VM and operating system running inside VMware. Under VMware,
each host system may have several guest systems. Guest operating system refers to only
the operating system on the guest system, while guest PC refers to the virtual computer as
a whole (Ward, 2002, p. 6). Both the guest OS and the host PC are referred to as the guest
to simplify the terminology.

Hard Drive: A type of data storage that takes the form of digitally encoded data on rapidly
rotating platters (Brain, 2000). Computers use hard drives as the main storage and
recovery of data. This will be one of the main focuses of the performance testing,
comparing the virtual guest hard drive speed with the physical hard drive speed.

Host: The host machine is the physical machine itself. It is the machine where a virtualization
product, such as VMware Server, can be installed. The host operating system is what is
installed on the physical host machine (Hammersley, 2007, p. 6). Both the host OS and
the host PC are referred to as the host to simplify the terminology.

Java: “An object-oriented programming language developed by Sun Microsystems in the early
1990s. Java applications are compiled to byte code, which at runtime is either interpreted
or compiled to native machine code for execution” (Patent Storm, 2000). This is the
language in which the author is doing all of his current VMware performance testing.

Network Interface Card (NIC): The NIC is a piece of hardware that allows computers to
communicate over a network. This will be one of the main focuses of the performance
testing, comparing the virtual guest NIC with the physical NIC.

Physical Hardware: The physical hardware is the hardware on the physical PC that the host OS
has direct access to. The main focusing of the performance testing is on the processor,
hard drive, and NIC.

Processor: The component in a digital computer that interprets computer program instructions
and processes data. This will be one of the main focuses of the performance testing,
comparing the virtual guest processor speed with the physical processor speed.

Structured Query Language (SQL): A language designed for retrieving and modifying data in
a computer database. SQL data retrieval over a network is what the author is using for
testing NIC performance.

Ubuntu: A free and open source operating system for PCs. It is a widely used Linux distribution
which is very easy to use and set up compared to other Linux distributions. The author
chose Ubuntu as one of the operating systems to run performance testing on along with
Windows XP Home Edition because of its ease of installation and popularity.

Virtual Hardware: This is the virtual counterpart of the physical hardware. The guest PC sees
what it thinks is physical hardware, but is really virtual hardware translated from the
abstraction layer. The guest has direct access to the virtual hardware. The main focus of
the author’s performance testing on the guest is with the processor, hard drive, and NIC.

VMware Server: Software
that creates a
virtualized
environment between
the computer platform
and its operating
system, so that the
end user can operate
software on an
abstract machine.

Windows XP: An operating
system designed to be
versatile enough to be
intuitive for the home
and business user.
Windows XP is the
most popular
operating system in
the world, and is
relatively easy to set
up and use. Along
with Ubuntu, the
author will be using
Windows XP for performance testing virtualization.

Figure 2. An overview of how the generic guest drivers
communicate to the host’s physical hardware through the

abstraction layer. (Image Credit: Munro, 2001)

Overview of VMware and Virtual Hardware
 The basic ideas behind VMware are common to other virtualization products in the
market, such as Parallels or Microsoft Virtual PC. The virtualization abstraction layer provides
generic drivers to the guest, while the same layer communicates with the host’s hardware and
passes the hardware input and output to the guest drivers. When a PC is running a VM, the host
OS and the guest OS are thought of as two “worlds” (Munro, 2001). The virtual world can
communicate directly to the processor or to the host’s other hardware through the abstraction
layer (Called the Emulation Layer in Figure 2). When a so called “world switch” occurs between
the host and guest, a decline in performance can occur (Munro, 2001). “Any time a VM accesses
an I/O (input/output) device, it gets a decline in performance from a world switch. For a
keyboard or mouse, this is not a major problem because they are very short duration and low
processing overhead events. However, for high throughput devices such as a network controller,
the overhead can become a problem” (Munro, 2001). The people at VMware have developed
very unique methods of trying to combat the overhead a NIC or a USB device can cause. They
have developed a unique virtual machine monitor (VMM), which “understands the context in
which I/O requests are made, and uses that knowledge to reduce world switches” (Munro, 2001).
Figure 2 gives an overview of how the generic guest drivers communicate to the host’s physical
hardware through the abstraction layer.
 The hardware components focused on during testing are the hard drive, the NIC, and the
processor. The main reason for focusing on these components is because they are common to
every computer and these are three of the four components that determine the performance of

any computer, physical or virtual. The fourth component is the memory (RAM). The author will
not be focusing on the RAM outright because the RAM is being used and accessed as a part of
the other tests, so the author did not feel that it needed to be singled out. The VM can easily be
configured to have more or less RAM, so the author has set a base of 512 MB of RAM for all
testing.

Setting up and Running a Virtual Machine in VMware
 The process of setting up a VM in VMware is identical to setting up a physical computer
after installing the VMware software.
The first step is to go to
http://www.vmware.com/download/ser
ver/, and download the free VMware
Server. Once it is downloaded for
either Linux or Windows, it should be
installed by running the executable in
Windows, or by extracting and running
the installation file in Linux. The
process will install all of the drivers
and software to have VMware server
run. Once the installation is completed,
the user runs the VMware Server
Console and connects to the local host.
 The next step is to create a new
VM using the “New Virtual Machine” wizard. This will bring up the wizard where the user will
be prompted to select the operating system they want to install in the new VM (Figure 3).

Selecting the operating system the user is
going to install is important, because
VMware will set up the optimal settings
for that OS. The user is then given options
about how they want the networking to be
implemented and how big they want the
virtual hard disk to be. One of the best
features about the virtual hard disk is that
the space can be allocated for virtual hard
disk dynamically as more space is needed
just by unchecking the “allocate all disk
space now” box. Then all the user has to
do is place the install disk for the
operating system they chose earlier into
the physical DVD/CD drive. Then the
user clicks “Start this virtual machine”
and the virtual PC will boot (Figure 4)

just like a regular computer and the operating system can easily be installed on the virtual hard
drive. Then once the system is installed, the virtual computer can be booted, suspended, and shut
down just like a physical computer. Figure 5 shows an example of Ubuntu running in a VM on
Windows XP.

Figure 3. Selecting the operating system to
install on the guest

Figure 4. The start of the VMware booting
sequence

http://www.vmware.com/download/server/
http://www.vmware.com/download/server/

Figure 5. Ubuntu Running in a VM on Windows XP

Virtualization and the Software Developer
 As stated in the beginning of this article, the author is using the VMware software from
the viewpoint of a software developer. There are many features of VMware that make it a great
solution for testing and running software in a real world environment. One of the goals of a
software developer is to develop software to run on many different operating systems while
giving the user the same experiences no matter the OS in which it is run. By using VMware, the
developer can take advantage of running multiple operating systems, as any x86 based operating
system can be installed in a VM. The family of x86 operating systems includes any version of
Windows, many versions of Linux, Solaris, FreeBSD, and many more. The ease of having any
operating system at the developer’s disposal can save a lot of time and money. There can be
many operating systems on one computer instead of many computers with one operating system.
Another feature that is very beneficial to the software developer is the ability to take “snapshots”
of the guest operating system. These snapshots save the exact state of everything in the VM.
Then, at a later time, the user can revert back to the snapshot whenever they choose. This means
that a software developer can do anything to a virtual computer and always go back to a previous
state of their choosing. The last feature is the ability to “pause” a VM, so a developer can easily
resume the guest operating system at any point in the future without having to shutdown the
virtual PC.
 A unique thing about the virtual computer is that what the guest sees as a hard drive is
actually just a file on the host. A full computer is encapsulated into this one file on the host
computer. This means that no partitioning needs to be done to set it up, which is different than if
two operating systems were going to be installed on the same physical computer. The
encapsulation allows the ability to copy VMs to other hosts. This can be done since the VM is
hardware independent, only depending on the generic drivers the abstraction layer provides. This
portability allows flexibility in testing different configurations between the guest and the host.
The guest will have no idea it has been moved, and will boot exactly the same as it did on the

previous computer. Finally, encapsulation allows isolation, which means that the guest is isolated
from other guest operating systems and the host operating system. This means that each guest
has its own registry and file system. By having this virtual barrier between the guest and the host,
if something such as a virus or other problem is present in the guest, it does not affect the host.
The guest can then either be reverted or deleted, and the problem will be completely gone.
 One good example of a possible usage of VMware here at UW-Stout is in the Data
Structures class. Most of the course is taught in C++ and therefore the professor usually requires
the use of Linux, since many Linux distributions have C++ compilers built into them. This also
gives the Data Structures student exposure to the Linux OS. Because the laptops that the students
use here are university issued, many students are reluctant to partition the hard drive and install
another operating system. They are wary of causing some sort of damage to the current Windows
XP system and all of their documents and files. By using a Linux distribution installed in a VM,
students could use the built in C++ compiler, without having to worry about damaging their
laptops in any way. The professor could actually have a preconfigured Linux VM and then
distribute the VMware file with the virtual Linux installed on it to the students. Then this file
could be booted through VMware just like a physical Linux installation. This would also ensure
that each student would have a duplicate experience.

Performance Testing Baselines
 The main reason for this performance testing is to show whether or not it is viable to run
a VM as a testing/developing environment for the software developer. A software developer
needs to test various configurations for their programs, so being able to use VMs seems to be
ideal. Through performance testing the author plans to determine whether this is the case.
 Before explaining the tests run on the virtual and host hardware, these are the processor
speeds and RAM allotments of the host PC and the guest PC that were subjected to tests, as each
computer sees: The host PC sees a 1.73 GHz processor and 2.00 GB of RAM and the guest PC
sees a 1.73 GHZ processor and 512 MB of RAM. The difference in the RAM is because the
guest actually gets allocated 512 MB (or as specified) of the 2.00 GB of the host. There are six
total configurations on which tests were conducted. The author ran two controls using only the
host; one test was run on Ubuntu and one was run on Windows XP. The other tests were run on
various combinations of hosts and guests: Ubuntu (guest) on Ubuntu, Windows (guest) on
Ubuntu, Windows (guest) on Windows, and Ubuntu (guest) on Windows. The author did all of
the current testing in the Java programming language because of its interoperability between
different operating systems. This allowed for a good comparison between the host control PCs
and the virtual set ups.

Each test was run 100 times and the results were averaged to get more accurate
measurements. All of the tests were also run on clean installs of the operating systems with only
the default settings to get the most unaffected and comparable results.

Performance Testing
 The first test was to determine the comparative processing speed of the configurations.
To test the processing speed the author created a program that tabulates the time it takes to create
500,000 Java objects (Figure 6).

Figure 6. The speed of creating 500,000 Java objects on the various configurations

The results show a minor decrease in performance compared to the controls when the
host operating system is the same as the guest operating system. The most surprising thing is the
difference between running Ubuntu on Windows and running Windows on Ubuntu. Windows on
Ubuntu took more than twice the time in creating the objects compared to the control, while
Ubuntu on Windows was actually faster than Windows on Windows. Overall the results show
that there are no major differences between the guest and the host, barring Windows on Ubuntu.
The author suspects that the large differences here are a result of the way the abstraction layer
executes the Windows code when Ubuntu is the host.
 The next test was to determine the comparative speed of the NICs on the various
configurations. To do this, the author created a program that executes an SQL query through the
Java Database Connectivity (JDBC) API (Figure 7). The SQL query result set included 99,900
rows.

Figure 7. The speed of SQL queries on the various configurations

The results here show a distinct speed difference when using Ubuntu as the host system
compared to Windows as the host. The author suspects that the reason is that drivers for things
such as NICs are specifically written by the manufacturer for Windows, while the drivers in
Linux distributions, such as Ubuntu, are written by the open source community. This may cause
a little difference in the implementation of the drivers. There is almost no speed difference
between the Windows control and the guests on Windows. On the Ubuntu side there is a little
more variation, with the surprise that Ubuntu on Ubuntu is the slowest (although not exceedingly
far behind the control). Again the author attributes this to the drivers for Ubuntu being written by
the open source community instead of the NIC manufacturer.
 The third test program written by the author determines the comparative input and the
output speeds of the hard drives on the various configurations. To do this, the program outputs a
large text file and then the program reads the file back in and the speeds of each operation are
calculated (Figure 8). The key to remember is that the VM’s so called hard drive is actually just a
file on the host’s hard drive.

Figure 8. The speed of Hard Drive Input and Output on the Various Configurations

These results show little variation when Windows is the host and much more variation
when Ubuntu is the host. With Windows and Ubuntu as the controls, their results are very similar
along with the two guest configurations on Windows. The main surprise in this test is Windows
on Ubuntu being almost twice as slow on both the input and the output side of things. The author
is unsure what factor to attribute that to, although one idea may be code bloat. Code bloat is the
fact that Windows continues to run programs developed for DOS, which requires keeping the old
code. This may be causing some of the performance issues that have occurred.
 The final test the author developed was designed to encompass all of the previous tests to
give an overall perspective on performance. The program queries the SQL database and outputs
the result set to a file. It then reads the file back in, and creates objects populated with what is in
the file (Figure 9).

Figure 9. The speed of running the full test, encompassing the NIC speed, hard disk I/O
speed, and the processor speed on the various configurations

The tests show that all of the results are very similar across the board, with the exception
of Windows on Ubuntu. This tends to go along with all of the previous results. The author was
slightly surprised that Windows on Windows did not perform better, but it is still close to the rest
and slightly faster than Ubuntu on Ubuntu. This test shows fairly conclusively that, except for
the Windows on Ubuntu case, a VM is just as useable as a physical PC.

Conclusion

The main concern about using VMs is the performance cost of using a VM over a
physical PC. Through testing, the author is confident that for the most part (and especially when
Windows is the host system), virtualization technology can be a great tool for a software
developer. The main selling point is the ability to have any operating system at the developer’s
disposal without the overhead of installing and configuring the OS each time. That is not to say
there is no decline in performance, however. There is a slight decline in performance in many
cases, but overall the decrease in performance is a very minor one. The only case the author
cannot currently recommend is running Windows on Ubuntu, although the author predicts that as
both the VMware software and the Ubuntu OS mature, this decline in performance will become
smaller. From the point of view of a software developer, the possibilities and applications of
virtualization are endless.

References

AT&T. (2008). Innovation ‐ Technology Timeline ‐ C++. Retrieved February 13, 2008, from AT&T Corporte
Web Site: http://www.corp.att.com/attlabs/reputation/timeline/83cplus.html

Brain, M. (2000, April 1). How Hard Disks Work. Retrieved February 13, 2008, from HowStuffWorks.com:
http://computer.howstuffworks.com/hard‐disk.htm

Hammersley, E. (2007). Professional VMware Server. Indianapolis, Indiana: Wiley Publishing, Inc.

Marshall, D. (2006, July 4). Survey Suggests Server Virtualization Catching On. Retrieved March 5, 2007,
from http://weblog.infoworld.com/virtualization/archives/2006/07/survey_suggests.html

Mittell, A., & Hutchings, J. (2006, November 22). Virtualization Using VMware Virtual Infrastructure.
Retrieved February 13, 2008, from Oxford University Computing Resources:
http://www.oucs.ox.ac.uk/its3/seminar‐notes/2006‐11‐22‐VMWare.pdf

Munro, J. (2001, December 21). Virtual Machines & VMware, Part I. Retrieved March 21, 2007, from
Extreme Tech: http://www.extremetech.com/article2/0,1697,10403,00.asp

Patent Storm. (2000, November 21). Development system with methods for just‐in‐time compilation of
programs. Retrieved February 13, 2008, from Patent Storm:
http://www.patentstorm.us/patents/6151703‐description.html

VMware. (2007). About Us Home. Retrieved March 18, 2007, from
http://www.vmware.com/company/home.html

VMware. (2006). Virtualization Overview. Retrieved March 19, 2007, from
http://www.vmware.com/pdf/virtualization.pdf

Ward, B. (2002). The Book of VMware: The Complete Guide to VMware Workstation. Berkeley, CA: No
Starch Press.

Wolf, C., & Halter, E. M. (2005). Virtualization: From the Desktop to the Enterprise. Berkeley, CA: Apress.

	Abstract
	Virtualization technology has recently matured to the point where it can be used dependably on a daily basis by anyone. Computer virtualization is the idea of running virtual computer(s) inside of a physical host computer. The basic idea behind the technology is not difficult to understand, but understanding how the technology is implemented is more complicated. In this paper, the basic ideas behind general virtualization are conveyed through VMware’s technology. VMware is a company that is on the cutting edge of this technology and they offer many different virtualization solutions for free and for purchase. Through benchmark testing, it can be shown that current virtualization technology is on par with physical PC technology. This means that the performance decline incurred by using a VM (virtual machine) is very minimal, and it is getting smaller by the day.
	Introduction
	Terms and Definitions
	Overview of VMware and Virtual Hardware
	Setting up and Running a Virtual Machine in VMware
	Virtualization and the Software Developer
	Performance Testing Baselines
	Performance Testing
	Conclusion
	References

